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LETTER TO THE EDITOR 

Comparison of classical and quantal spectra for the 
Henon-Heiles potential 

R A Pullen and A R Edmonds 
Blackett Laboratory, Imperial College, London SW7 2AZ, England 

Received 2 June 1981 

Abstract. The quantal energy spectrum is compared with the classical motion for a modified 
Htnon-Heiles potential. We show that there is good agreement between the amount of 
classical irregular motion and the proportion of energy eigenvalues sensitive to small 
changes in the perturbation parameter (as predicted by Percival). We further the work 
reported by Pomphrey and Noid et ai by taking into account the full symmetry of the 
Hamiltonian when computing the eigenvalues, and by showing that most of the high second 
differences of energy eigenvalues as a function of perturbation parameter correspond to 
avoided crossings. 

1. Introduction 

Percival (1973) has predicted that, in the semiclassical limit, the quantal energy 
spectrum of a dynamical system consists of a regular and an irregular part. In the 
general case for an inseparable Hamiltonian of N degrees of freedom the regular 
quantal spectrum corresponds, in the limit tt + 0, to regular classical motion, where 
trajectories lie on N-dimensional invariant toroids. The irregular quantal spectrum 
corresponds to irregular trajectories which are associated with unstable orbits (Conto- 
poulos 1971) which do not lie on invariant toroids. Energy eigenvalues of the irregular 
spectrum are more sensitive to a slowly changing or fixed perturbation than those of the 
regular spectrum. At low energies the classical phase space is dominated by regular 
trajectories, but as the energy increases a greater volume of phase space is taken up by 
irregular trajectories. 

Other criteria for distinguishing between regular and irregular quantal states have 
been discussed (e.g. Berry 1977) in terms of the behaviour of the wavefunctions. In the 
semiclassical limit regular wavefunctions have regular interference fringes and violent 
fluctuations in intensity associated with caustics of the classical motion. In contrast, 
irregular states have random patterns of interference maxima and minima with more 
temperate intensity fluctuations and anticaustics at boundaries of the classical motion. 

Pomphrey (1974) and Noid et a1 (1980) have made numerical studies of a modified 
HCnon-Heiles Hamiltonian (HCnon and Heiles 1964) 

H = ~ ( p ~ + p ~ + x 2 + y 2 ) + ( Y ( x 2 y - 5 y 3 )  (1.1) 
where p x  = i, p y  = j l  (m = l ) ,  comparing the quantal spectrum to the classical motion. 
Pomphrey (1974) found that for a = 0.088 there were a number of eigenvalues at 
higher energies which had large second differences, A?, with respect to small variations 
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in the perturbation parameter, a. A? is given by 

These eigenvalues belong to the irregular quantal spectrum and occurred above a 
critical energy, E,, which is the energy at which the classical motion begins its transition 
from being dominated by regular motion to being dominated by irregular motion. 

Noid et a1 (1980) made a similar investigation, but with a = 0.1118. They identified 
quantal states as being irregular if, in plots of energy versus perturbation parameter, 
avoided crossings were observed in the neighbourhood of a = 0.11 18. They found only 
one avoided crossing corresponding to two eigenvalues with large second differences. 
However, their choice of a supported fewer bound states and was further from the 
semiclassical limit. Full symmetry of the Hamiltonian had not been taken into account 
and therefore care was needed in distinguishing between large second differences 
corresponding to avoided crossings and spuriously large second differences produced 
by crossings. Although Pomphrey (1974) took account of the full symmetry of the 
Hamiltonian, he only computed non-degenerate eigenvalues which represent about a 
third of the total number available. We present a more thorough investigation of the 
same modified HCnon-Heiles Hamiltonian with a = 0.088, taking account of the 
symmetry, and computing all the available eigenvalues up to an energy just below the 
escape energy. We also show by numerical calculation that most of the large second 
differences observed correspond to avoided crossings. 

Figure 1. Contour plot for the modified Hbnon-Heiles potential with CY = 0.088. 
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2. Computation of classical orbits 

The classical equations of motion obtained from the Hamiltonian (1.1) are: 

(2.1) 
2 2 xi.'= - x - 2  ffXY y = - y + a y  - a x .  

We use the fifth-order error Runge-Kutta-Nystrom step method (Henrici 1962, p 173) 
to compute the classical trajectories with a time step length of 0.1. Tests were made on 
the accuracy of the computed trajectories by continually checking that the variation in 
energy was small, and by recomputation with a different step length. Similar methods of 
computation have been used by the authors for the trajectories of an electron moving 
simultaneously in a Coulombic and a magnetic field (Edmonds and Pullen 1981) where 
the equations of motion are more stiffly coupled. 

Figure 1 illustrates a contour plot for the HCnon-Heiles potential with a = 0.088. 
The potential has the symmetry of the C3v point group and the bounding curve for 
energies just below the escape energy at E = 21.522 is close to an equilateral triangle. 
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Figure 2. Surface of section pictures for the modified 
HCnon-Heiles potential with a = 0.088. ( a )  E = 10, 
( b )  E = 17, ( c )  E = 20. 
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Surface of section pictures (PoincarC 1897) have been produced (see figures 
2(a)-(c)) for a variety of energies, showing the transition from almost totally regular 
motion at low energies to almost totally irregular motion at high energies. Conser- 
vation of energy restricts any trajectory in 4-dimensional phase space to a 3-dimen- 
sional energy shell. At a particular energy, therefore, the restriction x = 0 defines a 
2-dimensional surface in phase space. Each time a particular trajectory passes through 
this surface, i.e. each time it crosses the y axis, a point is plotted at the position of 
intersection ( y ,  p y ) .  We employ a first-order interpolation process to reduce 
inaccuracies introduced by using a finite step length. 

Regular regions on the surface of section plots are characterised by sets of invariant 
curves, whereas irregular regions are characterised by a random-like distribution of 
intersection points. Elliptic points (Arnol’d and Avez 1968, p 218) are clearly seen to 
exist at E = 10 (figure 2(a)). These correspond to intersection points of stable periodic 
orbits, a d a r e  locate-the centre of a group of invariant curves. A t e  10 they o s r  
at (0 ,  JE/2) ,  (0, - JE /2 )  and (2.85, O), (-3.25,O). The points (0 ,  JE/2) ,  (0, - JE /2 )  
correspond to trajectories with zero angular momentum which travel up and down two 
of the reflection symmetry axes of the potential, i.e. along two of the vertices of the 
equilateral triangle. The surrounding invariant curves are produced by librating-type 
orbits, The other pair of elliptic points are produced by precessing-type orbits. Both 
types of orbit are discussed more fully by Noid and Marcus (1977). 

As we increase the energy the invariant curves break up, and at high energies where 
the motion is mainly irregular most trajectories cannot be labelled as being librating- 
type or precessing-type. At high energies unstable periodic orbits exist which cor- 
respond to hyperbolic points (Arnol’d and Avez 1 9 6 8 , ~  218) on the surface of section 
pictures. For example, the elliptic points at (0, * J E / 2 )  transform to hyperbolic points 
as we increase the energy from 18 to 19. 

In this letter we are not so much concerned with the finer details of the surface of 
section pictures but we are simply using them to illustrate the transition from a phase 
space occupied almost wholly by regular trajectories to one occupied almost wholly by 
irregular trajectories. It should also be noted at this stage that classical details which do 
not occupy larger volumes of phase space than (2.rrti)’, or areas of 2.rrh on surface of 
section pictures, cannot have a semiclassical significance. 

3. Computation of quantal energy spectra 

For the purpose of quantum mechanical calculations we consider the Hamiltonian in 
polar form 

3 l a 2  l a 2  1 , a r  
H =  +-r +-sin38 

2ar2  2r2ae2 2 3 (3.1) 

where ti has been put equal to 1. Eigenvalues of this Hamiltonian were calculated by 
diagonalising the matrix &? defined by fiii = ( $ i l & l $ i ) ,  where I,!I~ and are basis 
functions which are linear combinations of the eigenfunctions of the unperturbed 
harmonic oscillator with potential 

u = z r .  (3.2) 
1 2  
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The normalised eigenfunctions for the potential (3.2) are given by Louck and Shaffer 
(1960, equation (28)) to be 

(3.3) 

where V is zero or a positive integer, and 1, the angular momentum quantum number, 
has allowed values 

- v,  - v + 2 ,  - v + 4 , .  . , , v. (3.4) 
It is important to take account of the full symmetry of the Hamiltonian for two 

reasons. Firstly we can divide the matrix I? into submatrices and so reduce compu- 
tational time and storage, and secondly we can be sure that large second differences 
calculated by equation (1.2) are due to avoided crossings and not crossings. 

The full symmetry group of the Hamiltonian is the C3v point group (which is the 
symmetry group of the equilateral triangle). There are six elements of this group: 
E, C3, C:, cr, (TI, d'. E is the unit element, C3 and C: are rotations by 120" and 240" 
respectively and u, d ,  (+" are reflections about the vertices of the equilateral triangle 
(see figure 3). Table 1 is the character taMe for the irreducible representations of C3v. 

Figure 3. Reflection symmetry axes of the equilateral triangle. 

AI,  A2 and E label the different irreducible representations. We can see immediately 
from the presence of an irreducible representation of dimension 2 that the perturbation 
does not completely 'break the degeneracy of the unperturbed system. We now have 
eigenstates which are non-degenerate and have A or A2 symmetry, or we have doubly 
degenerate states with E symmetry. We choose basis functions which transform 
according to one or other of the three irreducible representations so that we may 

Table 1. Character table of the irreducible representation of the C3v point group. 

A1 1 1 1 
A2 1 1 -1 
E 2 -1 0 
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‘uncouple’ states which belong to different irreducible representations. This follows 
from the result that matrix elements must be invariant with respect to operations of the 
symmetry group of the Hamiltonian, and hence matrix elements involving basis 
functions belonging to different irreducible representations must vanish. 

The basis functions we have chosen are linear combinations of the eigenfunctions of 
the unperturbed harmonic oscillator and transform according to the irreducible 
representations of C3”: 
R( V, 0),  R (V, 3) sin 38, R (V, 6) cos 68, R (V, 9) sin 98, R (V, 12) cos 128, . . , (3.5) 

R ( V, 3) cos 3 8, R ( V, 6) sin 68, R ( V, 9) cos 98, R ( V, 12) sin 128, . , . (3.6) 

R(V, -2) e-i2e, R(V, -1) e-ie, R(V, 1) eie, R(V, 2) eiZe, R(V, 4) ei4e, R(V, 5 )  e ise . ,  . 
(3.7) 

where V must conform to the restriction imposed by (3.4). Basis functions defined by 
(3.5) transform according to A I ,  whilst those defined by (3.6) transform according to 
A*, and those defined by (3.7) transform according to E. The matrix formed from basis 
functions belonging to the E irreducible representation may be split again as matrix 
elements between functions with angular momentum not differing by 3 vanish, i.e. we 
may consider the matrix for functions with I = . . .-4, - 1 , 2 , 5  . . . separately from the 
matrix for functions with 1 = , . . -2,  1,  4, 7 . . .. These matrices give us the same set of 
eigenvalues and so it is only necessary to compute one of them. 

Values of non-zero matrix elements may be calculated using the orthogonality 
relation 

jomR(V, I)R(V’, I ) rdr=Svv,  (3.8) 

together with the recursion relation 

rR( v, I) = - [$( v +  I + 2)]’12R( v +  1, I + 1) + [$( v - I ) y 2 R (  v - 1,  I + 1) (3.9) 
(Louck and Shaffer 1960, equation (29a)) to obtain 

(V’+ I + 2)( V’+ 1 +4)(  V’+ I + 6) 
SV(V’+3) 8 

3 cyr 
3 

jom R ( v, 1 + 3)- R ( V I ,  I)r cir = 

(V’+ I + 2)( V’+ I +4)( V’- I) 

(V’+ I +2)(  V’- I)( V’- I - 2 )  * I 2  

SV( V’+ 1) 

SV( v,-1) 

SV(V’-3) * 

8 ) 
- 3( 8 ) 

1 (V’- I)( V’- I -2)( V’- I-4) 
8 

(3.10) 

The radial functions also satisfy the relation 

R(V, I ) = ( - l ) k ( u ,  -I) (3.11) 

(Louck and Shaffer 1960, equation (38a)) which is required when using linear 
combinations of the harmonic oscillator eigenfunctions to form our basis functions. 

Truncated matrices were diagonalised using the Householder reduction to tri- 
diagonal form (see Wilkinson and Reinsch 1971, pp 212-6) followed by the method of 
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bisection (see Wilkinson and Reinsch 1971, pp 249-56). The order of the truncated 
matrix taken depended on two factors. It was necessary to make the matrix sufficiently 
large so that the computed eigenvalues would converge to the required precision. 
However, if we made the matrix too large, the higher eigenvalues would begin to 
diverge due to the influence of basis functions with a significant proportion of their 
probability densities outside the ‘bounding triangle’ of the H6non-Heiles potential. 
Due to quantum mechanical tunnelling there are no strictly bound states of the system, 
though for small excitations the error in assuming discrete eigenstates is small. By 
truncating our matrix before divergence occurs we are effectively placing a positive 
infinite potential barrier at the corners of the ‘bounding triangle’ and hence obtain a 
discrete spectrum. 

For the two matrices representing eigenvalues belonging to the A I  and Az irre- 
ducible representations the optimum order for each matrix was found to be 230. This 
would indicate that the optimum order for the E symmetry matrix should be about 460 
(it has about twice the density of eigenvalues of the other matrices). However, storage 
limitations restricted us to diagonalising matrices up to an order of 400, and so the E 

Table 2. Number of regular and irregular states between E = 14.5 and E = 21.5. For E 
symmetry states between energies of 19.5 and 21.5 the inaccuracy in the computed 
eigenvalues was too high to include in the results. 

~~ 

No of No of 
Symmetry Energy Approximate regular irregular O/O 

matrix range error states states irregular 

A1 
A1 
A1 
A i  
A i  
A1 
A i  
A2 
A2 

A2 
A2 
A2 
A2 
A2 
E 
E 
E 
E 
E 
E 
E 
Total 
Total 
Total 
Total 
Total 
Total 
Total 

14.5-15.5 
15.5-16.5 
16.5-17.5 
17.5-18.5 
18.5-19.5 
19.5-20.5 
20.5-21.5 
14.5-15.5 
15.5-16.5 
16.5-17.5 
17.5-18.5 
18.5-19.5 
19.5-20.5 
20.5-21.5 
14.5-15.5 
15.5-16.5 
16.5-17.5 
17.5-18.5 
18.5-19.5 
19.5-20.5 
20.5-21.5 
14.5-15.5 
15.5-16.5 
16.5-17.5 
17.5-18.5 
18.5-19.5 
19.5-20.5 
20.5-21.5 

2 x 1 0 - ~  
2 x 1 0 - ~  

2 x 1 0 - ~  
6 x 

7 x 1 0 - ~  

4 x 1 0 - ~  
4 x 

6 x loV5 
6 x 
8 x 
3 x 1 0 - ~  
- 
- 

3 
3 
3 
4 
1 
2 
1 
3 
0 
3 
1 
3 
2 
3 
8 

12 
12 

6 
10 
- 
- 
14 
15 
18 
11 
14 
4 
4 

0 
0 
0 
1 
2 
2 
4 
0 
2 
0 
2 
0 
2 
1 
4 
0 
0 
8 
4 
- 
- 

4 22 
2 12 
0 0 

11 50 
6 30 
4 50 
5 56 
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symmetry eigenvalues were less accurate: than those for AI and A2 symmetry. The 
accuracy of various eigenvalues is given in table 2. We have considered those 
eigenvalues computed up to an energy of 21.5 (the escape energy is 21.522). 

4. Results and conclusions 

The purpose of this letter has been to test the prediction of Percival (1973) that in the 
semiclassical limit irregular classical motion corresponds to an irregular quantal 
spectrum. We have identified quantal eigenvalues as being irregular if they have large 
second differences corresponding to avoided crossings. Table 2 summarises our 
results. We have used equation (1.2) to compute the second differences for ACY = 
0.002. As the computed eigenvalues are only accurate to a given number of decimal 
places (table 2 lists the accuracies obtained), the second differences are similarly limited 
in accuracy. All high second differences listed in table 2, however, were well above this 
error bound. 

As we have taken symmetry into account we would expect all our large second 
differences to correspond to avoided crossings. This follows from a theorem of von 
Neumann and Wigner (1929), Teller (1937) and Arnol’d (1978) which forbids crossings 
between energy levels of the same symmetry for a one-parameter generic real Hamil- 
tonian system. We have checked this numerically for all large second differences 
obtained. Except for two pairs of eigenvalues all the large second differences clearly 
correspond to avoided crossings (figure 4 illustrates a sample of avoided crossings). The 
exceptions are apparent crossings of pairs of eigenvalues associated respectively with 
states of AI and E symmetry. We have decreased the gap in CY between successive 
values of energy computed around the apparent crossings, but limitations in accuracy 
have not allowed us to identify an avoided crossing. It is likely that the states are very 

17.5 

1p 
$ /  
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W 

16.2 

16.1 

d $18 
L 

c W 

d W 

U U00 U U 7  .- 
a a 

Figure 4. Energy versus perturbation parameter plots. ( a )  illustrates two avoided crossings 
for A2 symmetry eignevalues and ( b )  illustrates the E symmetry eigenvalues between 
energies of 17 and 19. 
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weakly coupled together, and if we were able to ‘magnify’ the region around the 
apparent crossing we would in fact find an avoided crossing. 

The results of table 2 show the appearance of irregular quantal states at an energy at 
which substantial regions of classical phase space become filled with irregular 
trajectories. As we increase the energy, the proportion of quantal irregular states 
increases. Of course, our choice of h is quite large, and a smaller value for h would 
provide a higher density of states and be nearer the semiclassical limit. We might then 
expect a better correspondence. 

In our calculations we have observed the behaviour of the eigenvalues for a small 
variation in perturbation parameter a. A global picture should be much more informa- 
tive, i.e. with sufficient computer time we could plot energy against perturbation 
parameter graphs for large ranges of a and observe the onset of regions of avoided 
crossings as both E and a increase. 
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